Apa itu bilangan ganjil dan bilangan genap? Bagaimana pengertian bilangan ganjil dan pengertian bilangan genap? Apakah definisi bilangan ganjil dan bilangan genap? arti dari bilangan ganjil dan bilangan genap? Bilangan ganjil adalah suatu bilangan yang jika dibagi dua maka bersisa 1. Bilangan genap adalah suatu bilangan yang habis dibagi dua. Definisi Untuk n bilangan bulat, maka 2n adalah bilangan genap. dan 2n+1 adalah bilangan ganjil. Dengan demikian, 0 termasuk bilangan genap. Karena 0 habis dibagi dua. Umumnya bilangan genap dituliskan dengan bentuk rumus , dengan k sebarang bilangan bulat. Dan bilangan ganjil dituliskan dengan bentuk atau juga bisa dituliskan , dengan k sebarang bilangan bulat. Dari perumusan tersebut dapat diambil suatu keunikan bahwa jumlah dua bilangan ganjil adalah bilangan genap. Jumlah dua bilangan ganjil artinya penjumlahan dari yang hasilnya adalah . Misalkan , maka bentuk terakhir dapat ditulis sebagai . dimana ini merupakan rumus untuk bilangan genap. Jadi, dapat diambil kesimpulan bahwa jumlah dua bilangan ganjil berapapun akan menghasilkan bilangan genap. Jumlah dua bilangan genap adalah bilangan genap. Jumlah dua bilangan genap artinya penjumlahan dari yang hasilnya adalah . Misalkan , maka bentuk terakhir dapat ditulis sebagai . dimana ini merupakan rumus untuk bilangan genap. Jadi, dapat diambil kesimpulan bahwa jumlah dua bilangan genap berapapun akan menghasilkan bilangan genap. Bilangan ganjil ditambah bilangan genap adalah bilangan ganjil. Jumlah dua bilangan dengan yang satu adalah bilangan ganjil dan yang satunya adalah bilangan genap artinya penjumlahan dari yang hasilnya adalah . Misalkan. , maka bentuk terakhir dapat ditulis sebagai . dimana ini merupakan rumus untuk bilangan ganjil. Jadi, dapat diambil kesimpulan bahwa jumlah dua bilangan dengan yang satu adalah bilangan ganjil dan yang satunya adalah bilangan genap akan menghasilkan bilangan ganjil. Perkalian dua bilangan ganjil adalah bilangan ganjil Perkalian antara bilangan ganjil dengan bilangan ganjil artinya perkalian antara . Dimana hasilnya adalah . Hasil terakhir dapat ditulis sebagai . Misalnya . maka bentuk adalah rumus untuk bilangan ganjil. Sehingga hasil kali antara bilangan ganjil dengan bilangan ganjil adalah bilangan ganjil Perkalian dua bilangan genap adalah bilangan genap Perkalian antara bilangan genap dengan bilangan genap artinya perkalian antara . Dimana hasilnya adalah . Hasil terakhir dapat ditulis sebagai . Misalnya . maka bentuk adalah rumus untuk bilangan genap. Sehingga hasil kali antara bilangan genap dengan bilangan genap adalah bilangan genap Bilangan ganjil dikali bilangan genap adalah bilangan genap. Perkalian antara bilangan ganjil dengan bilangan genap artinya perkalian antara . Dimana hasilnya adalah . Hasil terakhir dapat ditulis sebagai . Misalnya . maka didapatkan bentuk . dan bentuk adalah rumus untuk bilangan genap. Sehingga hasil kali antara bilangan ganjil dengan bilangan genap adalah bilangan genap Kuadrat dari bilangan ganjil adalah bilangan ganjil Kuadrat dari bilangan ganjil artinya perkalian antara . Dimana hasilnya adalah . Hasil terakhir dapat ditulis sebagai . Misalnya . maka bentuk adalah rumus untuk bilangan ganjil. Sehingga kuadrat dari bilangan ganjil adalah bilangan ganjil Kuadrat dari bilangan genap adalah bilangan genap Kuadrat dari bilangan genap artinya perkalian antara . Dimana hasilnya adalah . Hasil terakhir dapat ditulis sebagai . Misalnya . maka bentuk adalah rumus untuk bilangan genap. Sehingga kuadrat dari bilangan genap adalah bilangan genap
bilanganbulat dan pecahan dengan memanfaatkan berbagai sifat operasi. Menjelaskan dan menentukan urutan pada bilangan bulat. Menjelaskan dan menentukan refresentasi bilangan dalam bentuk bilangan berpangkat bulat positip dan negatip. Menjelaskan himpunan , himpuanan bagian , himpunan semesta , himpunan kosong , komplemen himpunan .79 MATEMATIKA Ayo Kita Menalar Guru meminta siswa untuk melengkapi tabel pernyataan berikut. Penyelesaian Alternatif Keterangan Selalu Selalu terjadi sesuai pernyataan Tidak selalu Terjadi sesuai pernyataan tapi tidak selalu, atau tidak berlaku untuk semua kondisi yang mungkin Tidak pernah Tidak pernah terjadi sesuai pernyataan No. Pernyataan Tanggapan 1. Jika a dan b adalah bilangan bulat, maka a + b juga bilangan bulat. Selalu 2. Jika a dan b adalah bilangan bulat, maka a − b juga bilangan bulat. Selalu 3. Jika c adalah bilangan genap dan d adalah bilangan ganjil, maka c + d adalah bilangan genap. Tidak pernah 4. Jika c adalah bilangan genap dan d adalah bilangan ganjil, maka c − d adalah bilangan ganjil. Selalu 5. Jika c adalah bilangan ganjil dan d adalah bilangan genap, maka c + d adalah genap. Tidak pernah 6. Jika c adalah bilangan ganjil dan d adalah bilangan genap, maka c − d adalah ganjil. Selalu 7. Jika c adalah bilangan ganjil dan d adalah bilangan ganjil, maka c + d adalah genap. Selalu 8. Jika c adalah bilangan ganjil dan d adalah bilangan ganjil, maka c − d adalah genap. Selalu 9. Jika e adalah bilangan positif dan f adalah bilangan positif, maka e − f adalah positif Tidak selalu 80 Buku Guru Kelas VII SMPMTs Ayo Kita ? ? Berlatih Berikut penyelesaian Ayo Kita Berlatih Ayo Kita Berbagi Guru meminta siswa untuk mendiskusikan jawabannya dengan teman sebangku atau teman dalam kelompoknya. Kemudian meminta mereka menyajikan jawaban terbaik di dalam kelas. Guru menjadi fasilitator dalam diskusi agak diskusi bisa terarah. A. Soal Pilihan Ganda 1. B 2. C B. Soal Uraian 1. a. Garis bilangan –700 –200 100 –900 –400 –100 – –500 –800 –300 –600 b. 2 a. Garis bilangan − − − − − − − −13−12−11−10 −9 − 8 −7 − 6 −5 − 4 −3 −2 −1 0 1 2 3 4 5 6 7 b. 13 meter 3. a. b. –50 c. –3775 81 MATEMATIKA Guru mengajak siswa untuk memahami perkalian dan pembagian bilangan bulat melalui konteks dalam kehidupan di sekitar. Secara umum, untuk a elemen bilangan bulat positif, dan b elemen bilangan bulat, a × b diartikan menjumlahkan b sebanyak a kali. a × b = b + b + b + ... +b a kali Guru meminta siswa untuk memahami sifat komutatif, asosiatif, dan distributif pada perkalian sebagai berikut. Pada operasi perkalian juga berlaku sifat komutatif, asosiatif, dan distributif. Untuk sebarang bilangan bulat a, b, dan c berlaku. 1. Komutatif a × b = b × a 2. Asosiatif a × b × c = a × b × c 3. Distributif Perkalian terhadap penjumlahan a × b + c = a × b + a × c Perkalian terhadap pengurangan a × b − c = a × b − a × c Guru meminta siswa untuk melengkapi tabel untuk mengecek sifat komutatif, asosiatif, dan distributif pada perkalian dengan melengkapi tabel berikut. Operasi Perkalian dan Pembagian Bilangan Bulat egiatan K
.