ContohProgram Java Menampilkan Deret Bilangan Ganjil (1 3 5 7 9 dst) - Contoh program java menampilkan deret bilangan angka ganjil java dengan perulangan for, Oia program bilangan ganjil java diatas sudah dilengkapi dengan penjumlahan dari deret yang akan ditampilan oleh program deret bilangan ganjil java tersebut, sehingga programnya akan

78 Buku Guru Kelas VII SMPMTs 2. Penjumlahan Bilangan Genap Ditambah Bilangan Ganjil Guru meminta siswa untuk melakukan investigasi hasil penjumlahan bilangan genap ditambah bilangan ganjil dengan cara melengkapi tabel penjumlahan dua bilangan genap. Contoh pengisian tabel Bilangan I Bilangan II Bilangan I + Bilangan II 6 7 13 ganjil 8 9 17 ganjil 10 11 21 ganjil 12 13 25 ganjil 14 15 29 ganjil Genap Ganjil Ganjil 3. Penjumlah Bilangan Ganjil Ditambah Bilangan Ganjil Guru meminta siswa untuk melakukan investigasi hasil penjumlahan dua bilangan genap dengan cara melengkapi tabel penjumlahan dua bilangan genap. Contoh pengisian tabel Bilangan I Bilangan II Bilangan I + Bilangan II 3 5 8 genap 5 7 12 genap 7 9 16 genap 9 11 20 genap 11 13 24 genap Ganjil Ganjil Genap 79 MATEMATIKA Ayo Kita Menalar Guru meminta siswa untuk melengkapi tabel pernyataan berikut. Penyelesaian Alternatif Keterangan Selalu Selalu terjadi sesuai pernyataan Tidak selalu Terjadi sesuai pernyataan tapi tidak selalu, atau tidak berlaku untuk semua kondisi yang mungkin Tidak pernah Tidak pernah terjadi sesuai pernyataan No. Pernyataan Tanggapan 1. Jika a dan b adalah bilangan bulat, maka a + b juga bilangan bulat. Selalu 2. Jika a dan b adalah bilangan bulat, maka a − b juga bilangan bulat. Selalu 3. Jika c adalah bilangan genap dan d adalah bilangan ganjil, maka c + d adalah bilangan genap. Tidak pernah 4. Jika c adalah bilangan genap dan d adalah bilangan ganjil, maka c − d adalah bilangan ganjil. Selalu 5. Jika c adalah bilangan ganjil dan d adalah bilangan genap, maka c + d adalah genap. Tidak pernah 6. Jika c adalah bilangan ganjil dan d adalah bilangan genap, maka c − d adalah ganjil. Selalu 7. Jika c adalah bilangan ganjil dan d adalah bilangan ganjil, maka c + d adalah genap. Selalu 8. Jika c adalah bilangan ganjil dan d adalah bilangan ganjil, maka c − d adalah genap. Selalu 9. Jika e adalah bilangan positif dan f adalah bilangan positif, maka e − f adalah positif Tidak selalu BilanganCacah: Bilangan yang dimulai dari bilangan 0 sampai bilangan yang tak terhingga. Bilangan Genap: Bilangan yang kalau dibagi 2 akan habis. Bilangan Ganjil: Bilangan yang kalau dibagi 2 akan bersisa 1, atau tidak habis. Bilangan Prima: Bilangan yang mempunyai 2 faktor, yaitu bilangan 1 dan bilangan itu sendiri.
Unduh PDF Unduh PDF Anda bisa menjumlahkan rangkaian angka ganjil yang berurutan secara manual, tetapi ada cara yang lebih mudah, terutama jika Anda mengerjakan banyak angka. Setelah menguasai rumus sederhana ini, Anda bisa melakukan perhitungan ini tanpa bantuan kalkulator. Terdapat pula cara sederhana untuk mencari rangkaian angka ganjil berurutan dari hasil penjumlahannya. 1 Pilih titik akhir. Sebelum memulai, Anda perlu menentukan angka terakhir dari rangkaian yang ingin dihitung. Rumus ini membantu Anda menjumlahkan urutan angka ganjil apa pun, dimulai dari angka 1.[1] Jika Anda mengerjakan soal, angka ini akan diberikan. Sebagai contoh, jika soal meminta Anda menemukan jumlah semua angka ganjil yang berurutan di antara 1 dan 81, artinya titik akhir Anda adalah 81. 2 Jumlahkan dengan 1. Langkah berikutnya adalah menambahkan angka titik akhir dengan 1. Sekarang, Anda memperoleh angka genap yang diperlukan untuk langkah berikutnya. Sebagai contoh, jika titik akhir Anda adalah 81, artinya 81 + 1 = 82. 3 Bagi dengan 2. Setelah memperoleh angka genap, bagikan dengan 2. Dengan demikian, Anda memperoleh angka ganjil yang sama dengan banyaknya digit yang dijumlahkan bersama-sama. Misalnya, 82 / 2 = 41. 4 Kuadratkan hasilnya. Terakhir, Anda perlu menguadratkan hasil pembagian sebelumnya, yaitu dengan mengalikan angka dengan angka itu sendiri. Kalau sudah, Anda sudah memperoleh jawabannya. Sebagai contoh, 41 x 41 = 1681. Artinya, hasil penjumlahan semua angka ganjil yang berurutan antara 1 dan 81 adalah 1681. Iklan 1 Perhatikan polanya. Kunci untuk memahami rumus ini terletak pada pola yang mendasarinya. Jumlah semua rangkaian angka ganjil yang berurutan dimulai dari angka 1 selalu sama dengan kuadrat dari banyaknya digit angka-angka yang dijumlahkan bersama-sama. Jumlah angka ganjil pertama = 1 Jumlah dua angka ganjil pertama = 1 + 3 = 4 = 2 x 2. Jumlah tiga angka ganjil pertama = 1 + 3 + 5 = 9 = 3 x 3. Jumlah empat angka ganjil pertama = 1 + 3 + 5 + 7 = 16 = 4 x 4. 2 Pahami data interim. Dengan menyelesaikan soal ini, Anda mempelajari lebih dari penjumlahan angka-angka. Anda juga mempelajari banyaknya digit berurutan yang dijumlahkan, yaitu 41! Hal ini dikarenakan banyaknya digit yang dijumlahkan selalu sama dengan akar kuadrat hasil penjumlahan tersebut. Jumlah satu angka ganjil pertama = 1. Akar kuadrat 1 adalah 1, dan hanya satu digit yang ditambahkan. Jumlah dua angka ganjil pertama = 1 + 3 = 4. Akar kuadrat dari 4 adalah 2, dan ada dua digit yang dijumlahkan. Jumlah tiga angka ganjil pertama = 1 + 3 + 5 = 9. Akar kuadrat dari 9 adalah 3, dan ada tiga digit yang dijumlahkan. Jumlah dua angka ganjil pertama = 1 + 3 + 5 + 7 = 16. Akar kuadrat 16 adalah 4, dan ada empat digit yang dijumlahkan. 3 Sederhanakan rumus. Setelah Anda memahami rumus dan cara kerjanya, tuliskan dalam format yang bisa digunakan dengan angka apa pun. Rumus untuk mencari jumlah n angka ganjil pertama adalah n x n atau n kuadrat. Sebagai contoh, jika Anda memasukkan angka 41 ke dalam n, Anda memperoleh 41 x 41, atau 1681, yang merupakan jumlah 41 angka-angka ganjil pertama. Jika Anda tidak mengetahui banyaknya angka yang dikerjakan, rumus untuk mencari jumlah antara 1 dan n adalah 1/2n + 12 Iklan 1Pahami perbedaan antara dua jenis soal. Jika Anda diberikan rangkaian angka ganjil yang berurutan dan diminta untuk mencari jumlahnya, sebaiknya gunakan rumus 1/2n + 12. Di sisi lain, kalau soal memberikan angka hasil penjumlahan, dan meminta Anda mencari rangkaian angka ganjil berurutan yang menghasilkan angka tersebut, rumus yang perlu digunakan pun berbeda. 2Jadikan n sebagai angka pertama. Untuk menemukan rangkaian angka ganjil berurutan yang jumlahnya sesuai dengan angka yang berikan soal, Anda perlu membuat rumus aljabar. Awali dengan menggunakan n sebagai variabel angka pertama dalam rangkaian. [2] 3 Tuliskan angka-angka lain dalam rangkaian menggunakan variabel n. Anda perlu menentukan cara menulis angka-angka lain dalam rangkaian dengan variabel n. Oleh karena semuanya merupakan angka ganjil, selisih antarangka adalah sebanyak 2. Artinya, angka kedua dalam rangkaian adalah n + 2, dan yang ketiga adalah n + 4, dan seterusnya. 4 Lengkapi rumus. Setelah Anda mengetahui variabel yang mewakili setiap angka dalam rangkaian, saatnya menuliskan rumus. Sisi kiri rumus harus mewakili angka-angka dalam rangkaian, dan sisi kanan rumus mewakili jumlahnya. Sebagai contoh, jika Anda diminta menemukan rangkaian dua angka ganjil yang berurutan yang jumlahnya sebesar 128, rumusnya adalah n + n + 2 = 128. 5 Sederhanakan persamaan. Jika ada lebih dari satu n di sisi kiri persamaan, jumlahkan semuanya. Dengan demikian, persamaan lebih mudah diselesaikan. Sebagai contoh, n + n + 2 = 128 disederhanakan menjadi 2n + 2 = 128. 6 Isolasikan n. Langkah terakhir untuk menyelesaikan persamaan adalah dengan membuat n menjadi variabel tunggal di salah satu sisi persamaan. Ingat, semua perubahan yang yang dilakukan di salah satu sisi persamaan, harus turut terjadi di sisi seberangnya. Hitung penjumlahan dan pengurangan terlebih dahulu. Dalam kasus ini, Anda perlu mengurangi 2 dari kedua sisi persamaan untuk memperoleh n sebagai variabel tunggal di salah satu sisi. Oleh karenanya, 2n = 126. Kemudian, kerjakan perkalian dan pembagian. Dalam kasus ini, Anda perlu membagi kedua sisi persamaan dengan 2 untuk mengisolasi n sehingga n = 63. 7 Tuliskan jawaban Anda. Pada titik ini, Anda mengetahui bahwa n = 63, tetapi pekerjaan masih belum selesai. Anda masih harus memastikan bahwa pertanyaan di soal sudah terjawab. Jika soal meminta rangkaian angka ganjil yang berurutan, tuliskan semua angkanya. Jawaban dari contoh ini adalah 63 dan 65 karena n = 63 dan n + 2 = 65. Sebaiknya Anda memeriksa jawaban dengan memasukkan angka hasil perhitungan ke dalam soal. Jika jumlahnya tidak cocok, coba kerjakan kembali. Iklan Tentang wikiHow ini Halaman ini telah diakses sebanyak kali. Apakah artikel ini membantu Anda?

Menghitung Penjumlahan bilangan genap ditambah bilanganganjil • Menghitung Penjumlahan bilangan ganjil ditambah bilanganganjil Sekolah : SMP MataPelajaran : MTK Kelas/Semester : VII /1 AlokasiWaktu : 2 x 40menit KD : 3.1, 3.2, 3.3 dan 4.1, 4.2,4.3 Pertemuan ke : 2 Materi Bilangan:

Melihat judul dari artikel yang saya posting hari ini, pastinya akan terbayang suatu nostalgia ketika kita duduk di bangku sekolah dulu kata-kata ini keluar dari seorang penulis yang sekarang sedang tidak sekolah dan berharap suatu hari nanti akan melanjutkan sekolah lagi. Yups, nostalgia mengenai suatu bidang ilmu pengetahuan yang berkaitan dengan angka-angka dan logika, tak lain adalah Matematika. Kita mengingat-ingat lagi mengenai bilangan genap dan bilangan ganjil, mungkin sebagian besar dari kita sudah tahu apa itu bilangan genap dan bilangan ganjil, tetapi kadang kita mengalami kesulitan apabila kita ingin mendeskripsikannya secara ilmiah. Tak pelak pula, terkadang kita juga masih bingung, apa saja anggota dari bilangan ganjil dan bilangan genap itu. Salah satu yang menjadi pertanyaan adalah, apakah bilangan “nol” 0 itu termasuk kedalam bilangan bulat atau ganjil ataukah berdiri sebagai bilangan sendiri di luar bilangan bulat dan bilangan ganjil? Ok, untuk mengupas lebih lanjut kita tinjau dulu definisi dari masing-masing dari bilangan bulat dan bilangan ganjil tersebut. Bilangan Genap Yaitu sebuah bilangan bulat yang merupakan kelipatan dari dua, dengan kata lain adalah suatu bilangan bulat yang apabila dibagi dengan dua akan menghasilkan suatu bilangan bulat dan tidak ber-sisa. Secara matematik dapat dituliskan sebagai , dengan k adalah sembarang bilangan bulat. Bilangan Ganjil Yaitu sebuah bilangan bulat selain dari bilangan ganjil, dengan kata lain adalah suatu bilangan bulat yang apabila dibagi dengan dua akan menghasilkan sisa 1. Secara matematik dapat dituliskan sebagai atau , dengan k adalah sembarang bilangan bulat. Note Saya katakan sebuah karena bilangan yang dimaksud itu tunggal bukanlah suatu himpunan, beda lagi kalau saya katakan himpunan yang artinya terdiri dari beberapa anggota bilangan tunggal. Sebagai contoh dari definisi diatas, agar permasalahan menjadi jelas, katakanlah ada sebuah bilangan 7 tujuh . Bilangan tujuh ini apabila dibagi dengan dua , 7 2 = ? hasilnya adalah 3 dan bersisa 1. maka dapat dikatakan bahwa –> 7 adalah bilangan ganjil. Hmm, ternyata defininisinya sederhana sekali hehehe. Btw dari definisi tersebut kita akan terbayang, kalau bilangan “nol” 0 itu ikut yang mana, karena definisinya hanya dua, maka bilangan “nol” 0 itu harus ikut dari salah satu jenis bilangan yang kita definisikan tadi. Kenapa? Jawabnya karena bilangan “nol” 0 adalah bilangan bulat. Mari kita perjelas, bilangan “nol” 0 apabila dibagi dengan 2, 0 2 = ? hasilnya adalah 0 nol dan tanpa bersisa. Jadi sangatlah jelas bahwa bilangan “nol” 0 adalah termasuk bilangan genap. Lalu apasaja sih anggota dari himpunan bilangan genap dan bilangan ganjil? Himpunan “bilangan Genap” even number dapat dituliskan sebagai E = {…,-4, -2, 0, 2, 4,…} Himpunan “bilangan ganjil” odd number dapat dituliskan sebagai O = {…, -3, -1, 1, 3,…} Ternyata, bilangan genap dan bilangan ganjil mempunyai sifat-sifat yanng unik, diantaranya adalah jumlah dua bilangan ganjil adalah bilangan genap. Jumlah dua bilangan ganjil artinya penjumlahan dari yang hasilnya adalah . Misalkan , maka bentuk terakhir dapat ditulis sebagai . dimana ini merupakan rumus untuk bilangan genap. Jadi, dapat diambil kesimpulan bahwa jumlah dua bilangan ganjil berapapun akan menghasilkan bilangan genap. Jumlah dua bilangan genap adalah bilangan genap. Jumlah dua bilangan genap artinya penjumlahan dari yang hasilnya adalah . Misalkan , maka bentuk terakhir dapat ditulis sebagai . dimana ini merupakan rumus untuk bilangan genap. Jadi, dapat diambil kesimpulan bahwa jumlah dua bilangan genap berapapun akan menghasilkan bilangan genap. Bilangan ganjil ditambah bilangan genap adalah bilangan ganjil. Jumlah dua bilangan dengan yang satu adalah bilangan ganjil dan yang satunya adalah bilangan genap artinya penjumlahan dari yang hasilnya adalah . Misalkan. , maka bentuk terakhir dapat ditulis sebagai . dimana ini merupakan rumus untuk bilangan ganjil. Jadi, dapat diambil kesimpulan bahwa jumlah dua bilangan dengan yang satu adalah bilangan ganjil dan yang satunya adalah bilangan genap akan menghasilkan bilangan genap. Perkalian dua bilangan ganjil adalah bilangan ganjil Perkalian antara bilangan ganjil dengan bilangan ganjil artinya perkalian antara . Dimana hasilnya adalah . Hasil terakhir dapat ditulis sebagai . Misalnya . maka bentuk adalah rumus untuk bilangan ganjil. Sehingga hasil kali antara bilangan ganjil dengan bilangan ganjil adalah bilangan ganjil Perkalian dua bilangan genap adalah bilangan genap Perkalian antara bilangan genap dengan bilangan genap artinya perkalian antara . Dimana hasilnya adalah . Hasil terakhir dapat ditulis sebagai . Misalnya . maka bentuk adalah rumus untuk bilangan genap. Sehingga hasil kali antara bilangan genap dengan bilangan genap adalah bilangan genap Bilangan ganjil dikali bilangan genap adalah bilangan genap. Perkalian antara bilangan ganjil dengan bilangan genap artinya perkalian antara . Dimana hasilnya adalah . Hasil terakhir dapat ditulis sebagai . Misalnya . maka didapatkan bentuk . dan bentuk adalah rumus untuk bilangan genap. Sehingga hasil kali antara bilangan ganjil dengan bilangan genap adalah bilangan genap Kuadrat dari bilangan ganjil adalah bilangan ganjil Kuadrat dari bilangan ganjil artinya perkalian antara . Dimana hasilnya adalah . Hasil terakhir dapat ditulis sebagai . Misalnya . maka bentuk adalah rumus untuk bilangan ganjil. Sehingga kuadrat dari bilangan ganjil adalah bilangan ganjil Kuadrat dari bilangan genap adalah bilangan genap Kuadrat dari bilangan genap artinya perkalian antara . Dimana hasilnya adalah . Hasil terakhir dapat ditulis sebagai . Misalnya . maka bentuk adalah rumus untuk bilangan genap. Sehingga kuadrat dari bilangan genap adalah bilangan genap. Sumber=
79MATEMATIKA Ayo Kita Menalar Guru meminta siswa untuk melengkapi tabel pernyataan berikut. Penyelesaian Alternatif Keterangan: Selalu : Selalu terjadi sesuai pernyataan Tidak selalu : Terjadi sesuai pernyataan tapi tidak selalu, atau tidak berlaku untuk semua kondisi yang mungkin Tidak pernah : Tidak pernah terjadi sesuai pernyataan No. Pernyataan Tanggapan 1.

Apa itu bilangan ganjil dan bilangan genap? Bagaimana pengertian bilangan ganjil dan pengertian bilangan genap? Apakah definisi bilangan ganjil dan bilangan genap? arti dari bilangan ganjil dan bilangan genap? Bilangan ganjil adalah suatu bilangan yang jika dibagi dua maka bersisa 1. Bilangan genap adalah suatu bilangan yang habis dibagi dua. Definisi Untuk n bilangan bulat, maka 2n adalah bilangan genap. dan 2n+1 adalah bilangan ganjil. Dengan demikian, 0 termasuk bilangan genap. Karena 0 habis dibagi dua. Umumnya bilangan genap dituliskan dengan bentuk rumus , dengan k sebarang bilangan bulat. Dan bilangan ganjil dituliskan dengan bentuk atau juga bisa dituliskan , dengan k sebarang bilangan bulat. Dari perumusan tersebut dapat diambil suatu keunikan bahwa jumlah dua bilangan ganjil adalah bilangan genap. Jumlah dua bilangan ganjil artinya penjumlahan dari yang hasilnya adalah . Misalkan , maka bentuk terakhir dapat ditulis sebagai . dimana ini merupakan rumus untuk bilangan genap. Jadi, dapat diambil kesimpulan bahwa jumlah dua bilangan ganjil berapapun akan menghasilkan bilangan genap. Jumlah dua bilangan genap adalah bilangan genap. Jumlah dua bilangan genap artinya penjumlahan dari yang hasilnya adalah . Misalkan , maka bentuk terakhir dapat ditulis sebagai . dimana ini merupakan rumus untuk bilangan genap. Jadi, dapat diambil kesimpulan bahwa jumlah dua bilangan genap berapapun akan menghasilkan bilangan genap. Bilangan ganjil ditambah bilangan genap adalah bilangan ganjil. Jumlah dua bilangan dengan yang satu adalah bilangan ganjil dan yang satunya adalah bilangan genap artinya penjumlahan dari yang hasilnya adalah . Misalkan. , maka bentuk terakhir dapat ditulis sebagai . dimana ini merupakan rumus untuk bilangan ganjil. Jadi, dapat diambil kesimpulan bahwa jumlah dua bilangan dengan yang satu adalah bilangan ganjil dan yang satunya adalah bilangan genap akan menghasilkan bilangan ganjil. Perkalian dua bilangan ganjil adalah bilangan ganjil Perkalian antara bilangan ganjil dengan bilangan ganjil artinya perkalian antara . Dimana hasilnya adalah . Hasil terakhir dapat ditulis sebagai . Misalnya . maka bentuk adalah rumus untuk bilangan ganjil. Sehingga hasil kali antara bilangan ganjil dengan bilangan ganjil adalah bilangan ganjil Perkalian dua bilangan genap adalah bilangan genap Perkalian antara bilangan genap dengan bilangan genap artinya perkalian antara . Dimana hasilnya adalah . Hasil terakhir dapat ditulis sebagai . Misalnya . maka bentuk adalah rumus untuk bilangan genap. Sehingga hasil kali antara bilangan genap dengan bilangan genap adalah bilangan genap Bilangan ganjil dikali bilangan genap adalah bilangan genap. Perkalian antara bilangan ganjil dengan bilangan genap artinya perkalian antara . Dimana hasilnya adalah . Hasil terakhir dapat ditulis sebagai . Misalnya . maka didapatkan bentuk . dan bentuk adalah rumus untuk bilangan genap. Sehingga hasil kali antara bilangan ganjil dengan bilangan genap adalah bilangan genap Kuadrat dari bilangan ganjil adalah bilangan ganjil Kuadrat dari bilangan ganjil artinya perkalian antara . Dimana hasilnya adalah . Hasil terakhir dapat ditulis sebagai . Misalnya . maka bentuk adalah rumus untuk bilangan ganjil. Sehingga kuadrat dari bilangan ganjil adalah bilangan ganjil Kuadrat dari bilangan genap adalah bilangan genap Kuadrat dari bilangan genap artinya perkalian antara . Dimana hasilnya adalah . Hasil terakhir dapat ditulis sebagai . Misalnya . maka bentuk adalah rumus untuk bilangan genap. Sehingga kuadrat dari bilangan genap adalah bilangan genap

bilanganbulat dan pecahan dengan memanfaatkan berbagai sifat operasi. Menjelaskan dan menentukan urutan pada bilangan bulat. Menjelaskan dan menentukan refresentasi bilangan dalam bentuk bilangan berpangkat bulat positip dan negatip. Menjelaskan himpunan , himpuanan bagian , himpunan semesta , himpunan kosong , komplemen himpunan .

79 MATEMATIKA Ayo Kita Menalar Guru meminta siswa untuk melengkapi tabel pernyataan berikut. Penyelesaian Alternatif Keterangan Selalu Selalu terjadi sesuai pernyataan Tidak selalu Terjadi sesuai pernyataan tapi tidak selalu, atau tidak berlaku untuk semua kondisi yang mungkin Tidak pernah Tidak pernah terjadi sesuai pernyataan No. Pernyataan Tanggapan 1. Jika a dan b adalah bilangan bulat, maka a + b juga bilangan bulat. Selalu 2. Jika a dan b adalah bilangan bulat, maka a − b juga bilangan bulat. Selalu 3. Jika c adalah bilangan genap dan d adalah bilangan ganjil, maka c + d adalah bilangan genap. Tidak pernah 4. Jika c adalah bilangan genap dan d adalah bilangan ganjil, maka c − d adalah bilangan ganjil. Selalu 5. Jika c adalah bilangan ganjil dan d adalah bilangan genap, maka c + d adalah genap. Tidak pernah 6. Jika c adalah bilangan ganjil dan d adalah bilangan genap, maka c − d adalah ganjil. Selalu 7. Jika c adalah bilangan ganjil dan d adalah bilangan ganjil, maka c + d adalah genap. Selalu 8. Jika c adalah bilangan ganjil dan d adalah bilangan ganjil, maka c − d adalah genap. Selalu 9. Jika e adalah bilangan positif dan f adalah bilangan positif, maka e − f adalah positif Tidak selalu 80 Buku Guru Kelas VII SMPMTs Ayo Kita ? ? Berlatih Berikut penyelesaian Ayo Kita Berlatih Ayo Kita Berbagi Guru meminta siswa untuk mendiskusikan jawabannya dengan teman sebangku atau teman dalam kelompoknya. Kemudian meminta mereka menyajikan jawaban terbaik di dalam kelas. Guru menjadi fasilitator dalam diskusi agak diskusi bisa terarah. A. Soal Pilihan Ganda 1. B 2. C B. Soal Uraian 1. a. Garis bilangan –700 –200 100 –900 –400 –100 – –500 –800 –300 –600 b. 2 a. Garis bilangan − − − − − − − −13−12−11−10 −9 − 8 −7 − 6 −5 − 4 −3 −2 −1 0 1 2 3 4 5 6 7 b. 13 meter 3. a. b. –50 c. –3775 81 MATEMATIKA Guru mengajak siswa untuk memahami perkalian dan pembagian bilangan bulat melalui konteks dalam kehidupan di sekitar. Secara umum, untuk a elemen bilangan bulat positif, dan b elemen bilangan bulat, a × b diartikan menjumlahkan b sebanyak a kali. a × b = b + b + b + ... +b        a kali Guru meminta siswa untuk memahami sifat komutatif, asosiatif, dan distributif pada perkalian sebagai berikut. Pada operasi perkalian juga berlaku sifat komutatif, asosiatif, dan distributif. Untuk sebarang bilangan bulat a, b, dan c berlaku. 1. Komutatif a × b = b × a 2. Asosiatif a × b × c = a × b × c 3. Distributif Perkalian terhadap penjumlahan a × b + c = a × b + a × c Perkalian terhadap pengurangan a × b − c = a × b − a × c Guru meminta siswa untuk melengkapi tabel untuk mengecek sifat komutatif, asosiatif, dan distributif pada perkalian dengan melengkapi tabel berikut. Operasi Perkalian dan Pembagian Bilangan Bulat egiatan K

.
  • 1hiif7trjw.pages.dev/520
  • 1hiif7trjw.pages.dev/855
  • 1hiif7trjw.pages.dev/457
  • 1hiif7trjw.pages.dev/995
  • 1hiif7trjw.pages.dev/851
  • 1hiif7trjw.pages.dev/463
  • 1hiif7trjw.pages.dev/91
  • 1hiif7trjw.pages.dev/377
  • 1hiif7trjw.pages.dev/794
  • 1hiif7trjw.pages.dev/828
  • 1hiif7trjw.pages.dev/759
  • 1hiif7trjw.pages.dev/579
  • 1hiif7trjw.pages.dev/170
  • 1hiif7trjw.pages.dev/948
  • 1hiif7trjw.pages.dev/619
  • penjumlahan bilangan ganjil ditambah bilangan ganjil